Raketový motor na tuhé pohonné látky
Raketa na tuhá paliva je druh raketového motoru, jehož palivo i okysličovadlo se nachází v tuhém stavu. Jedná se o nejdéle známý druh raketového pohonu. První zmínky pochází z 13. století z Číny a Arábie, kde bývaly rakety poháněné střelným prachem používány k tvorbě ohňostrojů i jako zbraň. Tuhá paliva byla jediným druhem raketového pohonu až do počátku 20. století, kdy byly učiněny první pokusy s kapalným palivem. V dnešní době je hlavní oblastí využití raket na tuhá paliva vojenství, ohňostroje a kosmický průmysl. Pro kosmické aplikace se využívají hlavně jako urychlovací a pomocné motory ale několik typů raket využívá tuhá paliva jako hlavní palivo.
Základní koncepce
Základními součástmi motoru jsou plášť, tryska, palivová náplň a zažehovač. Plášť slouží jako spalovací komora, je vyplněn palivem. Jednoduché rakety mají celý průměr vyplněn palivem a „odhořívají“ odspodu, moderní a výkonné rakety mají různou geometrii výplně s různě tvarovaným kanálkem pro dosažení požadované plochy hoření a palivo tak hoří po celé délce. Palivová náplň je kompozicí okysličovadla, paliva a různých dalších příměsí, která se za běžných teplot chová jako tuhé těleso. Po zažehnutí začne hořící palivo produkovat velké množství plynů. Plyny vystupují ze spalovací komory tryskou, jejíž tvar je uzpůsoben pro udržení tlaku v komoře.
Jednoduchý motor nelze vypnout a restartovat ani nelze regulovat jeho tah, jakmile je zažehnut, má vše potřebné k činnosti a hoří, dokud nedojde palivo. Pokročilejší konstrukce dokážou regulovat tah během činnosti pomocí otvorů, které vypouští plyny mimo trysku, nebo pomocí speciálního uzpůsobení geometrie paliva pro dosažení různého tahu v daných fázích letu. Některé moderní motory mohou být zastaveny a restartovány. Využívá se buď systém pro uhašení reakce ve spalovací komoře, nebo jsou motory sestaveny z několika postupně zažehovaných segmentů (např. Space Shuttle Solid Rocket Booster).
Moderní motory mohou disponovat dodatečnými zařízeními, jako například systémem směrování trysky, naváděcím systémem, sebedestrukčním systémem, padákem, menšími pomocnými motory atd.
Konstrukce
Návrh motoru začíná u potřebného impulsu, z něj vychází množství potřebného paliva a okysličovadla. Další hlavní parametry jsou odvozeny od požadovaných provozních podmínek a provozní charakteristiky pro danou funkci, kterou bude motor plnit. Pro dosažení optimálního chodu je třeba spolupráce několika vědních oborů, chemie, metalurgie, fyzika a další. Hlavní parametry, které určují výslednou charakteristiku motoru, jsou: typ paliva, geometrie palivové kompozice, tvar trysky a odolnost pláště. Následující provozní parametry jsou řešeny samostatně nebo je dosaženo jejich kompromisu.
- Stabilní a předvídatelné spalování je určováno povrchem palivové náplně a tlakem v komoře.
- Tlak ve spalovací komoře je určen geometrií trysky a rychlostí spalování paliva.
- Maximální dovolený tlak ve spalovací komoře je určen použitým materiálem pláště.
- Délka hoření je závislá na tloušťce vrstvy a množství paliva
Geometrie rozložení paliva
Palivo hoří na povrchu a postupně prohořívá hlouběji. Geometrie rozložení paliva ve spalovací komoře tak hraje důležitou roli v celkovém výkonu motoru. Tvar výplně se postupně mění a tím se mění i povrch výplně, vystavený proudícím spalinám. Hmotnostní průtok Qm (kg/s) spalin je funkcí hustoty paliva ρ, okamžitého povrchu hořících plynů As a lineární rychlosti hoření daného paliva br (m/s).
Qm = ρ . As . br
Běžně se používá několik geometrických konfigurací paliva:
Kruhový otvor – poskytuje progresivně-regresivní křivku tahu
Otvor tvaru C – Mimo osu motoru je umístěn velký otvor. Poskytuje snižující se tah po delší dobu. Dochází k nerovnoměrnému ohřevu a nerovnoměrnosti vektoru výstupních plynů.
Měsíčkový otvor – Kruhový otvor mimo osu. Křivka tahu je progresivně-regresivní, delší tah, teplotní a tahové nerovnoměrnosti.
Finocyl – Otvor ve tvaru pěti nebo šesticípé hvězdy. Stálý tah, hoří kratší dobu.
Plášť
Plášť může být vyroben z mnoha různých materiálů. Malé rakety poháněné střelným prachem mají plášť z kartonu, silnější motory používají hliníkové slitiny, silné motory jako Castor mají plášť z oceli a moderní motory používají kompozitní materiály z uhlíkových vláken a epoxidové pryskyřice, například motory GEM. Plášť musí být dostatečně odolný, aby vydržel poměrně velké tlaky (1-10 MPa) a vysoké teploty. Proto se z konstrukčního hlediska jedná o tlakovou nádobu. Jako ochrana před teplotou a korozivními účinky spalin se často používá ablativní nástřik na vnitřních stranách pláště. Důležitou částí pláště je těsnění, selhání těsnícího o-kroužku bylo příčinou nehody raketoplánu Challenger.
Motor GEM-60 rakety Delta IV
Tryska
Tryska raketového motoru na tuhé pohonné látky se moc neliší od trysky motoru na kapalná paliva. Tvarem se jedná o lavalovu dýzu. Oproti motoru na kapalná paliva ji nelze chladit regenerativně a materiál trysky tak musí vydržet vysoké teploty. Materiál bývá na bázi grafitu nebo se používá uhlíkový laminát. Některé motory mají systém vektorování tahu pomocí výkyvné trysky (Space Shuttle SRB) nebo se používá systém LITV. LITV (liquid injection thrust vectoring) je systém vstřikování kapalné látky do proudu spalin za ústím trysky, kde dojde k rozkladu a odpaření kapaliny, což zvýší tah a poskytne řídicí moment hybnosti.
Palivo
Za příklad nám poslouží složení směsi pro urychlovací bloky raketoplánů (dva bílé válce po stranách zrzavé externí nádrže). Největší podíl, celých 69% tvořil chloristan amonný, což bylo okysličovadlo. Dalších 16% připadlo na práškový hliník, který pomáhal hoření. Zhruba 12% směsi tvořila sloučenina polybutadienakrylát, 2% připadla na epoxidový vytvrzovač a 0,4% tvořil oxid železitý, který zde sloužil jako katalyzátor. Směs se při výrobě nalije do nádrže (v podstatě se jedná o tlakovou nádobu, protože musí odolávat značným tlakům). Po nalití se směs nechá vytvrdit. Důležité je, že se uprostřed této směsi ponechá otvor. Jeho tvar ovlivňuje rychlost hoření a jeho výběr je velmi důležitý viz. Geometrie rozložení paliva.
Zkušební zážeh motoru na tuhá paliva